অন্তরজের ধারণা থেকে কোন বিন্দুতে বক্ররেখার স্পর্শক ও অভিলম্বের ঢাল

একাদশ- দ্বাদশ শ্রেণি - উচ্চতর গণিত - উচ্চতর গণিত – ১ম পত্র | NCTB BOOK
698

গণিতে, কোনো বিন্দুতে বক্ররেখার (curve) স্পর্শক (tangent) ও অভিলম্বের (normal) ঢাল নির্ণয় করার জন্য অন্তরজ বা ডেরিভেটিভের ধারণা ব্যবহৃত হয়। কোনো ফাংশনের একটি নির্দিষ্ট বিন্দুতে ঢাল বলতে আমরা বুঝি সেই বিন্দুতে স্পর্শক রেখার প্রবণতা, যা মূলত ফাংশনের প্রথম অন্তরজের মান দ্বারা প্রকাশ করা যায়।

১. স্পর্শকের ঢাল

ধরা যাক, একটি ফাংশন \( y = f(x) \) দেওয়া আছে। \( x = a \) বিন্দুতে এই ফাংশনের স্পর্শকের ঢাল নির্ণয়ের জন্য প্রথম অন্তরজ \( f'(a) \) বা \( \frac{dy}{dx} \bigg|_{x=a} \) নির্ণয় করতে হবে। এটি আসলে \( a \) বিন্দুতে \( y \)-এর প্রতি \( x \)-এর পরিবর্তনের হার বা ঢাল দেয়।

উদাহরণস্বরূপ, যদি \( y = x^2 \) হয়, তাহলে \( y \)-এর প্রথম অন্তরজ \( \frac{dy}{dx} = 2x \)। সুতরাং, \( x = 2 \) বিন্দুতে স্পর্শকের ঢাল হবে:

\[
\frac{dy}{dx} \bigg|_{x=2} = 2 \times 2 = 4
\]

অর্থাৎ, \( x = 2 \) বিন্দুতে স্পর্শকের ঢাল \( 4 \)।

২. অভিলম্বের ঢাল

অভিলম্ব (normal) হলো স্পর্শকের উপর লম্বভাবে অবস্থানকারী একটি রেখা। অভিলম্বের ঢাল \( -\frac{1}{f'(a)} \) দ্বারা প্রকাশ করা হয়, যেখানে \( f'(a) \) হলো \( a \) বিন্দুতে স্পর্শকের ঢাল।

উপরের উদাহরণ অনুসারে, \( x = 2 \) বিন্দুতে স্পর্শকের ঢাল \( 4 \) হওয়ায়, অভিলম্বের ঢাল হবে:

\[
-\frac{1}{4}
\]

সুতরাং, \( x = 2 \) বিন্দুতে বক্ররেখার অভিলম্বের ঢাল \( -\frac{1}{4} \)।

সংক্ষেপে,

  • \( x = a \) বিন্দুতে স্পর্শকের ঢাল \( f'(a) \)।
  • \( x = a \) বিন্দুতে অভিলম্বের ঢাল \( -\frac{1}{f'(a)} \)।

এইভাবে, ডেরিভেটিভের (অন্তরজ) ধারণা ব্যবহার করে যেকোনো বিন্দুতে বক্ররেখার স্পর্শক ও অভিলম্বের ঢাল নির্ণয় করা যায়।

Promotion
NEW SATT AI এখন আপনাকে সাহায্য করতে পারে।

Are you sure to start over?

Loading...